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THE POSITIONING PROBLEM -
A DRAFT OF AN INTERMEDIATE SUMMARY
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AN INFORMAL INTRODUCTION

The positioning problea arises whean it i3 necessary
to locate a set of geographically-distributed
objects using zessurements of the distancas betwaen
some object pairs. In & Packet Radio Natwork, for
instance, any two network nmexbers that can talk to
asch other may use a sizple time-stamping mechanisa
to measurs the distance betwsen them; a distancs
zeasurement protocol 3ay then be developed. The
problem  is  wnether and how the distance
measurszents. c@n be used to detaraine the
geograpnical location with respect tO0 a given
systen of ccordinates.

A knovl adga of the precise locaticn of sach astwork
node is orucial to the operation of Distributed
Sensors  Networks. The data collected and
intarpreted Dby different sSensors Jay be sorrelated
and integrated only if we \mow their preciae
looation. A poaition-looating system sy Dda
invaluanle to the operstion of a fleet of vehicles,
cach equipped with a Psoket Radio Unit. For
axaaple, zonitoring the loowtion of a [fleet of
saaurity veniolea, airopaft, a tank diviaion, or a
flogik of niasiles cowld all be azaisted by A
poaition=logating system. Clearly a positicodng
aysten would Ye an  iaporetant service to Paoket
Aadio Netwok users. & o e
A fav provlera st he solvad Dbefore o good
2aiticning system way be developed:

1, dfficlent wmlgorithiny o  deteraine  the
soation  of objects by uaing distance
seasurezents stould be devaloped.

¢, Sonditicns under which a solution exists op
does Aot exist anould Ye identifled.

conditiony under whieh thare exists a
unique soluticn should be estanlished.

v
.

4. Conditiony uwnder whish Chebe existas &
finite  auaber 3¢ solutions asnouid e
ident{fled. It 2nould alao Se  underdtood
how to transform ane sodution into another,

5. Conditicny under whick the soluticn (3
fnsenaitive to mall «essurezent ertors
nould Se established.

6. Tight bHounds upen the wcouragy of the
solution ahould be detersined.

1. lleconditioned
1centified.,

protlazy should e
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However, while the formulation of the problems 1is
simple, the zathematical and algorithmice
intricacies of deriving aclutions are perplexing.

To develop some insignt into the prodlems, let us
consider a few simple examples, The asimplest
positioning problsa of interest is to locate three
points using distance measureasnts. 3y means of
siopla trigonometry, this may usually be done
easily. iHowever, lat us consider a degsnerata
triangle (Figure 1). Because the systam is very
sensitive to  arrors, 3 saall error in the
Teasyrement zay producs a large error iao the
computed position., Some of the questions to de
addressed are a3 follows: Why is the dagenerate
triangle senzitive to errors? lHow can we deteraine
uhether or not other systems are sensibive?

| 2 3
SRS A SMNALLAY

gure 1. 4 Degensrate Triangular Syatea
Posttioning syatwas may he construoted by a  siaple
procedures of pasting trianglas togsther, and swdh
syatems nay be positionad by soiving the erisngles
from which they are constructed. For fnatame,
consjider the syatea of points depicted in Flgure 2,
It i3 possidble teo locate the points ln the order
auabered. Hovaver, ths saze aysteat adaits o faw
aokuttons (the nusber of which grous exponeatially
vith the mber of nodes). [f ve had some further
inforaation sboud the positions of the objects, now
could we use 1t to ldeatify the trus solution? For
instanoe, Lf ona fade 13 Waown to de a venicle
soving on a Jertaln rosd, oany of the eanibis
solutions that 3atisfy the iistance Jonstrsints an
be elisinated. because they assign the verisle 20 a
position nrot  on the road. Hov should thac
elisjoation be effecte?

Flgure 2. & Triangulated Pesttioning iystes
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In particular, if a aew aeasurement were given
(Figure 3), how can we find the right solution
among all possible ones? (A few sulutions may wmatch
the measurements to within a given error.) We have
shown that this last dacision oproblem belongs to
the <class of difficult comdbinatorial decision
problams-~tha so-called NP complets problema. The
last statement also proves that the existence

oroolem (i.s., Does a solution exist?) is NP
completa,
Q new measurement
2
I
figure 3. A Triangulated Poaitioning Systeam with

an additional Measureasnt

ot all positioning ay-*ems 3ay be solved with the
sid of triangles. In fact, fOr a system possesaing
1 sufficiently Large number of nodes, it {3 aluays
poasible that the position of the nodes can de
iccated only by solving for the lLosaticn of all
points sisultanacualy.  Suoh  usfortunetes systess
sequire an enoraoul amdunt of qoaputation. Ffor a
a42ple sexample, <cousider the hexagon af Figure .
it i3 iapossible to solve the locatiaon af i3 nades
uaing  an lacreseatal algorithm; all zust be solved
AL oncad.

"

4 Posttioning Systea valch Zay valy
o8 30lved sizultanscusly

fortunately emough, such primiSive systemy (uhese
parts ocannot be positioned unless the whole dystea
13} tee@m to D8 rare. Nany positiening 2vysteas
2guld e zolved using an inoretental prooesa (unich
afzplifies “he soluticn algoritis and locreases (ta

speed  and  accursay).  However, an algeriths that
wuld zonatruot the ozation of a glven oint
systea Sy  2onstructing subaystems firat should be
sole  tz  ideatify  conatructidie  parey. i
pretiaular, 3suen an algoritha shouid ce able to

sgoide whether or 20t 4 given poaiticning systea

1

contains a  subsystem that may be solved
independently. Nanmely, any incremental
construction algorithm aust decide whether or aot a
given positioning system {s primitive (i.e.,
constructible but naving ao  constructidle
subsystoms). The last problem ssems to be 1
difficult combinatorial problem which ws suspect to
be NP complets (though we do aot yet «mow aow to
prove this).

If the last conjecture is true, then the problem of
constructing solutions to the positioning probleam,
using an incremental algorithm, is NP complets.
This unfortunate result does not iaply Shat "brute
force* (i.s., iteraf ve algorithma) should 2e
preferred. It is reasonable to delisve that most
actual positioning probleads may be better solvad by
meany of an intelligent incremental algoritam. The
preacise zeaning of "most? ls yet to be defined.

Numerous other challanging and interesting related
problsms  exist, While we will a0t make 3
cotprenenaive presentation, we will sxamine soame of
the probleams formally, sxpose the difficulties, and
present some partial solutions wa have Javeloped.
This report 13 an extended summary of our present
state of knowledge. 4 zore Jetailed report ia uow
bYeing prepared.

1. THE PROBLEMS

The positicning problea ocan bde  desoribed 13

follows:

1. P:‘}(F‘,Pa. o o« 2y, @ 2et of potoes tn .
the plane.
2. A seb af dlstancy Ssasuretgnts Jetueen 30320

pairs of pointa, Each ssasuresent Jacud
cousiacs of the ideatity of the pair 2, and

Py the ssssured Jfstanus d“ atd  an

eatizsle of the ssasuredent ereoe ¢ .
+

3. Posttion agordinutos for At least three
pointa, aay P‘. 2, PE' to be called the

We tmall call the set of pointa 2, together MR

the  distance SRRsSuUrssents Nx‘} and the vase
tiriangle, 3 2oigh 3¥ALR$3. ’

1.2 PREBLANS

A Zaaaibla aoail € the polat ayatens i3 a2 et o

ccordinacea hat satisfies the distanue csnstrainty
and  239ighs to tRe f2ads  triacgle Its  sctual
geordtnates. The set of all feasible positiens
will be called the golutisn st 20 the positloning
provlea. The pasiticning predles  2onadats @l
charscterizing the 3olution set aadely,

1. Is the solution set eapey? (gxiatance!

2. Jces the solution set aehtain A foptliouuld
af solutiony, or 13 1% a dlsorete zet! I3
it a finite set? \gopapsiised Jalzuenazy)




3. If the solution set is finite, what are all
the {easible golutions? (poaition

ot

4, What is the error in the position dus to
propagation of zeasuremsnt srrors? (arpep

analvals)

5. What is the sensitivity of the solution set
to neasurenent errors? (genaitivity

In what follows we exaaine some partial ansuers to

for several centuries,l the solution to azost
fundamental questions of rigidity are far from
known. Recently interest in this age-old problem
has been renewed {WHITELY 77,78], and some
significant contributions produced.

2.1.1 Charagterization of rigidity

The first problem, i.e., that of characterizing
rigidity, has a faw solutions, all of wnich employ
local infinitesimal oharactesrizations. Loosely
speaking, a strucsture |s rigid if it does not adamit
relative potions of its parts, that is, if the ocaly

SOy some of the difficult probleas posed above. sotions ~which it  adaits are trivial (i.e.,
Tais translations and rotations). Therefors the study
' Note that in the sequel we restriat ourseives to Of rigldity is a study of poasible motlons. A
. the problem of cositioning points relative to sach rigld structure corresponds to a  positioning
¢ sther, i.2., with respsct to any coordinate system Problem with a3  disorete solution sat. in
o of our anoice. This leaves us three degrses of infinitesimally rigid structure corresponds to an
N fresdom (two for translation and one for rotation) error-insensitive solutiocm.
- and the orientation for our choice of the .
tN coordinate syatem. With the aid of the third item There are two approaches to motions of structures:
SRS on the input list (section 1.1) it is possible to Ib 1s possible to consider the velooity veotors of
X poaition the point system absolutely once it has the nodes or the relative angular motion of edges
X Jeen positioned relative to an aroitrary coordinate 3ttached to a common node.  Acaordingly, it is
‘o™ system. podsible to develop two notions of infinitesimal
Mg rigidity. Another pasyible approacn i3 %o consider
Wt 2. GEONETRIC RBSULIS the strasses in Lhs structure resulting from
L applying external forves. Rigidity aay be dafined
Y e associate vith the point aystem a graph ubose ;.: the ability of the structure to resolva forces.
Ry vertices represent points and voose edgea repredent 13 posable o ahow that both the agove
] distanca seasuresents. We call this graph the ;g‘]’“’“’"” are squivaleat (GLUCE 75, W4TTELY 717,
L. Zasaucananta graph and say that a given proparty of M
a peint systea i3 gomhinatacial when it oan de
) expressed ln terds of the messuresents graph only. ORS3 KxRlesal
: A atugtuce ia a graph together with a aapping of .
. edges into positive real nuabers uhioh ua oall Chme:cn;:gtizn of M*“:i"“““"“ \hich
: lengalia. A positioning systew 9ay e considersd as e not lafinitesizelly rigid,
' a  pla«joianted  bar  struosure, L.a., A truss, i
. Proolems of uniquaness of (L.e., structurs of the :“: ié"“g*t':;:‘:iy rigid ;t“‘f‘“"’ ) l“
. solution set} for the positioning probles translate 'o:{ e u e b °: v:tﬂ:;: 0 a 93;:: N
1nto problema of riglddty of the respective truss. ¢ ruature to ve rig 0.0 2 e
Problems of a4 solution's asnaitivity ta errors laite ""“{“‘ wotiana of ity parta) yet
trenalats tnto prodbleams of  infloitesizal  rigidity :° ““‘1:&::' t“"iﬁl}ﬂrﬁﬁrmcxﬁw(l.oi.
of the cespective truzs (1.e., adaisstbilicy of e; sanaltive ‘exsm“d' i typioal axazple
iafinitesimal flexang of the trysa), Prodless of Sedanerate tus 1"‘?‘ g oriature i3 the
aonatruatiog 4 solution to the positioning prodlem sqsasrate triangle la figure 1.
gotrespond te sonatructicn of the truas. Therefore .
ve wnall use =ethods and tersinclogy that percatn e difficuity ia yolving thia prodbles B3
o both seeaotures sod Leusses. that ve 10 not poasess extansive tools far
giotal analysis, wnile local analysfs 1L
2.1 RIMDITY vell develaped.
- . 2. Chareoterization of pigidity with respect
The reaults ln this ares fall {ato three classes: to di seontinuous =otions such a8
1. & acaer 3 4ifferent charadterizationys of reflsations.
tnflnitesizal rigidity (error senaitivity). Consider the pair of Fasted triangles :n
2. an algoritha to determice uasther or ot & figure 5{a) BDelow. Tha two triangles zay
siven soluticn of the positicning prevlea be poaiticned with respact 0 each sther in
{3 sensitive Lo deasurezent dreces. two  distinat wys. e twe resulting
: structures are rigid {40 net  admit  con
srivial moticns) aut adait relative
. 3 ¢ 2 rization 3f plane
3 ;giﬁ:;“t:“t‘xng? : ‘;Mp"w o: tie reflection of arts.  Otner  atructures
underl ying 2sasurezsnts graph.
13 partiai l{st of researchers ifterestes ‘a3 ‘he
While the 7precies of  atructural  rigidity haa aretlen  inaludes Paseal, Suler, Sauany, MAxuesl,
attricted dathezaticlans, entitesrs, aad aronitect3  yyley, ilexavdrov, and sthers.
i)y
‘."'..‘_‘\‘_"h“ IR I RN S S SN R, T L N T PO .




admit a wmore complex form of discrete
novament of their iaternal parts., e.g.,
Figurs 5(b).

The probdlea of characterizing rigidity with
‘respact to discrete motions is difficult,
for we not only have to address a problem
of global analysis, dut also faos difftcult
aroblems of combinatorial topology.

2 g
B /\
N 2 1 2

Figure 5(a) 4

3 4

2
flgure 9(b)

Flgurey 3(a) ang (b). Tuo caams of two rigid struge
Tures solviag the ase positicoing problea.

31,2 Srtor sensitivity

The iffavent definitions of lafioitesisal oigldity
trduce 44 fferent algorithas to detaraing whether o
not 3 given strusture 13 lafloitesizelly cigid.
Hovever, o3t of hose algorithma have been
Jrcdused by and for satheamaticians uncondersted with
smaputational efficisnoy. Ve aave developed a
novel algonitia TO test ulistheir a given feasible
solution cf the positioniy prodles s
fofiattesinally rigid, 1.¢., losensitive RO erpors.

The ldes dshind the rizididy Zesting algoritha iz
atzplet try to idlve for an adeianible azsigomans
of infinitesizal velcoitiey that (lexen tie
atructurs. It 13 necessary to exsaine daly the
effecty of a velocity assignmants over a Wt o
basic olrcuits of the underiying sassuressat greph
in order to redude the problam to the a0lubicn of &
Linesr systea of equations.

{20 aroklezs:

1. Ssn0lish =sasures of error setaitivity ang
algorithns to coupute ssositivity.

The characterization of error sensitivity
in terms ‘of infinitesimal rigidity is too
crude. We would like to have an estimate
of hQW magh error 3sensitivity a given
structurs possasses.

Develop sensitivity aseasures in
the distancs measureseants data,
particular solution they yield.

terms of
not the

In addition to tha difficulty involved in
developing apriori seonsitivity zeasures, ve
face the diffioculty that the same
#easurement data wmay have a oumber of
solutions, sach  possessing different
senaitivity. Apriort it is sven possidle
for a given systes Of measuremant data to
possess some rigid and somes nonrigid
solutiona. Figure & depiots two solutiona
of the same positioning problea, one rigid
and the other infinitesimally (lexible.

5

¢

figure 6. A positloniag problea possuasing A eigid
and sn lodiolesainnily-fiexible 20l::bien

Yo shgll sow desoriia Lhe thisd slasa of voesulta in
:te detall.

2.2 ¥RON GEGMEIRY YO COMRLAATORICS
ud.t SBALT grepus

The 203t pouerfiul reswltd of Lt atudy of cigldity
sppasr e e combinstorial  oherscteriationa of
rigid stroatures.  The tdear banhind the  passige
from  gecaetry to cosbizstaries arod founded n xeue
atapie lntuitive experiesces?® the major idea of
which {3 that some comdinations of Swre (adzes) ang
argen {(nodes) are rigld for alzost any  cholce of
plasy 1abedding. For lostascs, the fuil graph on
thres 3ded 13 ri5id for all plens  imdeddings; it
iz npt lafinitesisgaily rigid uben lhe three poiats
are oolinemr. Slatiarivy,  atructures uNCKe

Tatultlan sneuld st be pursues bSliedly, hovaever,
uhan At vomes 10 peodless af ~igldity, (Or-sas e
shall see-~zmany intudtive expectatlions lurn g,
rpriaingly, to e falsa.




underlying graph is a full graph are rigid for
almost any pianc imbedding. On the other hand,
some graphs will produce flexible structures for
almost any plane imbedding (e.g., a circuit on four
nodes is alaost always flexible, except when one of
the edges is assigned a zero length or when all
four points are colinear). The problem ia: I3 it
peaaibie io gharaaterize gracha almosh all of whoss

eqbeddings form rigid structuresl. This quastion
has been the major problem of the theory of
rigidity.

We shall define a oriticsl combinstorial property
of 3raphs which ve call (plane) atiffneas. First
ve a.ssgcuta with a graps 3 2 <V,8> a number
£(3) 2IVi-|E{=3, measuring the overall excsass
of unknowns over constraints. (Each  vertesx
contributes two unknown coordinates, and each «ige
constrains tha two vertices incideat unto it
through a single equation for the distanacs. Hots
that we disaount three dJegrees of frasjoa to
account for posaible external motion, 1i.e.,
translation and rotation.) The quantity £(G)
aeasures the oversll fnasdon of intscoal mo¥emeat
of hhe graph.

The quantity £(3) oay be usad to expreza the
sroperty of stiffuass, i.e., of having a sufficient
vwusber of sonstraints to prevent relative sotiena
of diffarent parts of a graph. lLoosely spaaiing, &
grapn in atiff if it i3 possible to reove some
radundnas  edges 30 Shat the resaining graph has 0
degreas of internal fresdcm. awd ocon  of its
NGLPAONS XA AR excezs of conatraints (l.e., a
amiive  internal fresdox). Forwally, a graph
Ge<¥,82 48 AMALL L2 1t has a spanning aubgraph
a0y {0, ' i3 gesavated by removigg
meetsive constraints from G) suah that

o E@'3al (L.e., GY nas 0 degress of interan)
freeton)

2. if 4% 48 apy aubgraph  of  G' hen
He*) 2 0. {L.e., 3 dows nut oslwss
Laternally over-cossteained audgraphy) .

2.2.2 The elgidfny Lhsgiren

The sost laporesnt result of the gecastric theory
b poaitionday &8

THEOREY (Plane RLgLasty)

3 maedd pGtuniuRs :wsi pa¥e a atil
Atasuiteaby avosha  Loirerasly. alaaan
mwwua&xmm

(Hars "gimsgt 251" is used An the ‘topolegical
sengd, §.6., the 3ot of #1gld plane lzdbeddings of a
= oPf gravh is opud wad  dense in the spate of
tmbeddings, waten  Sucther Lzplles that  for any
Sorel probybility =esturs an the 3pace of all
jwoeddings, oconcinusuy  with  reapsct  to Lebszague
sessure, the st of nun eigid labeddinga of a aeiff
gragh ta af weasurs U.)

Ly 1y, SLUTK 1S, WHITELT 19, ROTH~ASSINOW *8)

The theorem above is a significant tool for
handling positioning problems, namely, it makes it
possible to infer oproperties of structurs and
derive answers to the problems of positioning by
axamining ths Jaasucoment graph quly. The results
that we derive will be trus for almost all
assignments of distances to edges of the
asasursaent graph, which g3reatly simplifies the
study of the positioning problem.

To further appreclate the pover of the result 1let
us note in passing that the theorsm does not
generalize sven to three dimensioual structuras.
That is3, it i3 possible to have a sufficient aumber
of well distributed constraints and yet havs a
structure with a continuum of solutions ao mattar
what lengths are assigned to the edgea. ~Tigure 7
belovw depicts a typical system. The combinatorial
charagtarization of rigid atructures in spaces of
dizensions greater than two i3 an open problea.

FLgue 7. A counter axasple to a J-dissasioanl

eigidity thworsa

2.3 LINITATIONS OF THE RYGRDITY THEQAEM

The rigidity Shecrwm zuarsnteas that a3  structure
Yaaad on a LAl graph will alooat alweys Ye pigid.
Howavar, it 13 poodible 20 easign lengths tc  edzun
of a stif?f grapa auch that the resulting structure
adaity iafindtemiml fNexing and {3, tharefors.
very seasitive o erroras. In fact, the strusture
beccwes 39 efvas sincreasing sschaniazm. Jae 3uch
structure iy the degsnecate triangle of 7Figurs !,
another 13 Pascald's nexagon depizted in Figure 3.
This hexagon 13 3tif? and thua rigid for alzost all
plans {2beidings. HYowever, the fhexagen i3
tofinitesizally Nexidle vhenever {and amly 1) 1ty
aodss 1ile on a zonice section. This dizarre rasult,
due to (CROFTCN 1878], 133 Jean rediscovered
{odependentiy 8y  sany  researchers  (including
surselves). The gpreof follews fros a alzple
application of e velebrated theores P Pastal.

An even wor3e Dase s that of a atifr granh
sdmatting a eontilauc . aotien lf.e., a0 laDedding
of the 3ItLf? graph that Y3 ner even 3lavallw
rigid).  Such a strudture la depiidted La Flgure .

ial




Pigure 9. A flexible atrusturs whoss
vaderlying sreaph &3 rigid.

Althougn the underlying graph 13 atiff  {even ostural  lnatrusent  for  a  dividesaad-conguer
overconstrajned), the solution st of the  apptoach to the construation probles.)

respect iva positicalug problem Contains a contiouua

of sniutions. 3.1 CHARACTERIZATION QF STIFF GRAPHS

Yo produce asuoh an  axanple we  started with 3 The quastion that we wuld like to address in this
none1gid  struseturs (f.e., A sschenimm), then  section  ia: MOt oEKRS & AcaoP ARALLD Ve uish o
seticwlously added bars that 43d not constrala tha  dertve necewsary and sufftolent conditiana fer
:rion of the driginsl sechanisa, Specafionlly, ve  SUifTuess  in terzsy of vell lnown graph proparties.
stapted uith a four-dar smonspisc, sulsoted a point  The Soat oacursl of oclassigal  graph  jroperties
an any diagonal snd conneated this posat to polats  relating 1o 3tiffness 1y conneativivy.

ot the eriginal sschaniswm. B8y carsful selection of

the connections %o produce tuo psrallelogrems, ths  1.1.1 Jome 3ieple charsoterizations

tion of the original aeqhaniam 13 not parturdsd

L

» by the wdditional “conatreinta.® Additlonsl DASY e have been 3ble to derive & liat of useful
N e used saly to hold sach of the ariginal fouwr  prapertiem of stiff gephas .

- bars together.
B the rizidlty theeea  guaraatess that  suan  !e A SEifT grapn i3 3 blook (L.e., has no out
. Unpleasatt D0sitLONiNg Systedtds are extredely rare. yectex) .

i let ve 3nould bear o aind that they 3ay exiab 5 4 aye_gat of a stiff graph, separating it
! {(algnly  syemsteic  striotwea are  very likely fato tw rnontrivial  coagonants, sust
e exceptions). contain at least J edges.

;; 1. CONBINATORICS P POSITIONING 3. A J-cuteget of a Stiff graph, npsnuz\a.u
inte tuo nontrivial cmponents, sust 2.30
N Having seen the aignificance and liaitatisns of separate It into W ILICC grapha.
A stiffness, we vill now study stif? grapha ln order 4. If JCY,E> 43 & SLLFT graph and V' Y a
3 12 develop sethods for recognizing stiffness and vertex sut-aet separating 3 1ato scapesents
for tearing structures into atiff subpartas, later 3,8 <¥4,80> an@ Lf the subgrapn of
cezanting 1ho3e party together. Tearing i3 the .
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spannad by V' 1is stiff, then so are the
subgraphs spauned by V'u Vi,

If v is a vertex of degree two in a graph
G, then § is stiff iff the subgraph of G
forzed by cemoving v is 3tiff too.

The above results are a sazple from a larger class
>f results, all of which sarve to establian tools
for a M"divide and coaquar® approach to the
stiffness problem. For instance, we would like to
determine whether a given graph can be torn into
stiff subparts whioh may later be used Lo
synthesize the original graph. Figure 10 depiots a
typical configuration, corresponding to result (3)
in the above list, Figure 11 depicts another
possible configuration whioh admits tearing, this
time 3 particular inatance of (4).

3.1.2 Stiffness and sonneativity

Loosely spsaxing, stiffneas is a property of grapns
wnich has to do with the denaity of edges, i.e., it
is a gessure of how vell different nodes are
attached to each other. It is oaly astural tc
expect that such a proparty should bear relatlon to
slaasizal neasures of sdge-density.

neasures of

Thers are tlhrea 2ajor dlassical

wdga-density: node degreas, alnizal edge cut-set,
ainimal vertex outeset. Here we explore the
relations s3oag these tarea  proparties and
stiffaeas,

)

figure 10,

1HFF vartex cut—tat

Slgure 'V,

1)

1. Ihere sgxist grapoa dogse  sodes posgess
acditrapily large degresa dut shich ars aet Stiff.

To prove this result we descride a simple method to
construct counter examples. Start with a flexible
graph, say a four-bar aschanism. Add nodes and
edges to incresse the degress, preserving the
flexibility. This oprocess is deaonstrataed in
Flgure 12.

The above procass sarves to anow that:

2. Thers exial Zcapha dith an acditracily lacs
Qinigal sdge-qut-3at Dut xhich are oot atifl,

Thus, two of the classical zeasuras of sonnectivilty
ire not related to stiffness. Let us now 2onaider
the atrongest neaA3yure ot Zonnect ivity,
vertex-connectivity.

We have seen in the pravious seaction that a 3tiff
graph i3 at least 2egonnected. It i3 easy to
construat 2 and J-connected graphs wnich are aot
atiff. But wvith K-conneqted graphs, & 2 4, the
problea is  no  longer  sizple. Indaed any
Ywconngcted graph Suat have a zinimal degres uhich
i3 at least 4. Thus the total ausher of wdges 1 is
at least tuice the ,jumber of nodes. Tharefore the
overall naumber of {nternal degrees of (freedonm
£(G)32neme3 i3 not greater than -3. Not only ls a
Yegoanected gSraph  over-constrained, but  the

.

Tearicg tloay 3 Jeaubeset

Tearing along a stiff vertax sut-set




connectivity iwplius that the edges must be well 3.2 CONSTRUCTION PROBLEMS
distributed. Intuitively one would expect that a

S-connected graph is stiff. A position-locating algorithm is essentially a

process that starts with some set of poiants whose
Not so. It is posaible to construct Y-connectsd pelative positions are known and gradually attaches
and even 35-connscted graphs which are flexible. ey sets of poiats whose relative positions are
Two such examples are depicted ia Figures 13 and computed with respsot to the original nucleus.
1, Such a process may bde viewad as a (possidbly .
parallel) 3olidiffeation of parts of the
The proceas we applied to derive these two QJsasurexment graph into bodies.
surprising grapns cannot bde applied to produce §-
(or 30re) connscted grapns whioh are flexibls, We To be able to descridbe incremental construction
40 not know at all wnether such graphs even exist. Drocesass we ased to introduds a suitable

. The problea 13 opea: formalism. In the following we shall desoribe suah
a formalisa, then apply it to develop and tmpleasnt
3. la thera 3 quaber k such Lhal any kegonpagted —construotion algorithas. :

4raoh i3 andsf2

. 3.2.1 stiff nypargraphs
AL this point, nowever, the problea is mainly of an a - .
scademic interest, for a ondition which requires A HuDecgmagh H = <V,2> conaists of a et of
such a high contectivity seezs to ba of no Vortices V and a set of sdges E. An edgs i3 a
practical significance. subset of verticea (not neceyzarily just two, 38 ia

graphs). We shall use this generalized notian of
To asummarizea, we have Ssen that the relation 30 e&dge to desoribe a 3et of vertices uhose
Jetween atiffness and yeasures of connsotivity (if relative positions are known. An adge Ls said to
thers 13 any) are not simple, contrary to the D@ lnoidmRt upon a given vertex if if gontainy the
apriort intuition waich leads us %o explore these Vertex. 4 vertax 413 aaid to be laoident upon a
relations.

e,
- 2a TAN.

A e
A AN

ARz

31 12, Conatrudting flexible graphs with
Gure . )
arditeary ocde degrees Figure 130 & Reconnected flexidle graph

Figure '3, A Seconnacted flexible graph
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given edge {f it is contained in this edge. We
shall consider only hypergraphs for which the
intarsection of any two edzes contains at most one
point.

To devalop a visual intuition of the procestes to
e discussed, one should .onsider hypergraphs as a
generalization of  structures. Rather than
considering pin-jointed bars, w8 conaider
pin-jointed metal sheets of an arditrary shape and
aunber of pins (each matal sheet corresponding to
an edge of the bhypergraph and each  vertex
sorrespondisg %o a joint). To draw further on the
analogy, wa shall use the term link as an
alternative to an edge; ths term Jjojngh will bs
saployed a3 an alternative to vartex.

Lat d, denote the degree of the i-th vertex (i.a.,
L ]
the auaber of sdges inoideat wupon it). Let di

Jencte the dsgree of the i-th edge (i.e., the
aumoer of vertices inoident upon it). The gegras
of tne hypergraph H i3 definsd to he the nuaber

2
3
SCHERD IS ais,. vaere a(a} 13 the total auz-

1} tw}
ner of adges (vertiQes).

The nusoer €(H) £ 2nedo-2d(H) 1 called ghe
doksraal fresdgn of H. It i3 eaay Lo verify that
Sar a2 graph H the definition of f£(H)  adbowe
deganeratea to the ausber of lotermul degress of
{raadon defined ia pravious seaticas.

Tae notlon of astiffness 2an de genacalizad Lo
wypargrapna 33 fallows. A wpergraph H s 3aid ta
d@ aniff LfP AL contaias a spanniag hypersreph H'
uch that

1. fH') « 0
2. for any subhypergraph B of W' 2{U*) 3 0

Let a3 iatredute a partial ordes over Wypargraphs,
uhich we call ysiddnd. A ypergeaph §¥ s 3aid %o
30 3 velding o a Aypergeaph L each e«dge of ¥ L3
3 uaton  of edges la H which spaa a aniff
aubhypergradh of A.

It 13 pogaldle to show Shat atiffness (3 presarved
under el dng. Noveaver, IRCh HYPETEraph posissses
8 vaique veldisg which i3 saxinal (cznnot be weldwd
any  core).  If N(YH) designates the Iaximal welding
of tae hypergrapn H, then P{N(K)) defines thy
qagre ok L of d. It can %e shovm that
$INEHY) 2 3 with squality 408 B 13 3tiff, in  which
sase N{H) has 2 single edge covering all the aodes.

3.2.3 lnoreasectal construotion slgorithss

An incresental onstruction algeritha s a  preomss
that 3starts with a given positicaing prebles and
Jevalops a acluticn 3y g~adually inereasing the
38t3  of pOLnts wnoge celative iocaticna are Anoun.
At each 3tage, the state of the vcoaputation may bHe
deserided as 3 hypersraph whole eiges zonsiat of
4¢%n 2f points uhowe relutive posttions are altready
wown.  Such a Aypargraph {3 necessarily a welding

of hypergraphs in the previocus stages. In short,
an {incremental construrtion algorithm is a procesas
that traces a chain in the partial order of
walaing.

We define a xelder to de an aperator that takes 1
hypergraph znd produces a welding »f 1it. aAn
inocremental conmstruction algorithim is thus a
progeas of successive applications of weldera.

We have developed software to represent and
zanipulate structures and hypargraphs. Two types
of <elders have been izplemsnted and sose siaople .
construntion algorithms tried. We posasss the

tools waich are necassary to devalop
position-logating algorithza of increasiag
sophistication.
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